Experiment 7: Spectrum of the Hydrogen Atom 实验 7: 氢原子光谱

Nate Saffold<br>nas2173@columbia.edu<br>Office Hour: Mondays, 5:30-6:30PM Nate Saffold<br>nas2173@columbia.edu<br>办公时间: 周一, 5:30-6:30PM

INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 ## 实验物理实验室入门 1493/1494/2699

Introduction ## 介绍

Light Spectra ## 光谱

Discharge lamps and artificial light ## 放电灯人造光

Atomic spectra ## 原子光谱

PHYS 1493/1494/2699: Exp. 7 - Spectrum of the Hydrogen 物理 1493/1494/2699: 实验. 7 - 光谱

Interlude: Spectra in Astronomy ## 插曲: 天文学中的光谱

Interlude: How stars emit light ## 插曲: 恒星如何发出

Interlude: How stars emit light ## 插曲: 恒星如何发出

The Balmer formula ## 巴尔末公式

1λline =R(1nf21ni2); with: R=1.097×107 m1\frac{1}{\lambda_{\text {line }}}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) ; \text { with: } R=1.097 \times 10^{7} \mathrm{~m}^{-1}

1λline =R(1nf21ni2); with: R=1.097×107 m1\frac{1}{\lambda_{\text {line }}}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) ; \text { with: } R=1.097 \times 10^{7} \mathrm{~m}^{-1}

Example: the visible spectrum ## 例子: 可见光谱

NOTE: in the real experiment you will perform:

  1. "Green" looks bluish-green
  2. "Blue" looks purple
  3. "Purple" looks dark violet. It will be very hard to see...

注意: 在实际实验中,你将观察到:

  1. "绿色"看起来是蓝绿色
  2. "蓝色"看起来是紫色
  3. "紫色"看起来是深紫罗兰色。它将很难看到...

Bohr's model for H atom ## 玻尔模型与氢原子

Ln=n; with: n=1,2,3,;=1.05×1034 J sL_{n}=n \hbar ; \quad \text { with: } n=1,2,3, \ldots ; \quad \hbar=1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}

Bohr's model for H atom ## 玻尔模型与氢原子

1λ=me464π3cϵ023(1nf21ni2)\frac{1}{\lambda}=\frac{m e^{4}}{64 \pi^{3} c \epsilon_{0}^{2} \hbar^{3}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)

Towards Quantum Mechanics ## 迈向量子力学

Since 1838 In a warid where nuthing is real you have to look beyond reality. quantities like energy and angular momentum can be discrete. This changes everything!

自1838年起 在一个现实一切都不真实的世界里,你必须超越现实去看。像能量角动量这样的可以是离散的。这改变了一切!

Spectroscopy ## 光谱学

Spectroscopy ## 光谱学

The emission spectrum of hydrogen ## 发射光谱

De-excitation of electron results in emission of photon

电子去激发导致光子发射

The emission spectrum of hydrogen ## 发射光谱

The emission spectrum of hydrogen ## 发射光谱

Contrary to the Lymann one, the Balmer series is visible to the naked eye!

莱曼系列相反,巴尔末系列可见!

Review: interference of light ## 回顾干涉

dsinθ=mλd \sin \theta=m \lambda

Review: interference of light ## 回顾干涉

dsinθ=mλd \sin \theta=m \lambda

λi=dmsinθi; with: λi= blue, red, yellow, \lambda_{i}=\frac{d}{m} \sin \theta_{i} ; \quad \text { with: } \lambda_{i}=\text { blue, red, yellow, } \ldots

The Experiment ## 实验

Main goals ## 主要目标

Equipment ## 设备

You can rotate the telescope tube and change the angle θ\theta 您可以旋转望远镜管并改变角度 θ\theta

Equipment ## 设备

- Light is emitted from the arc lamp and focused with a lens ## - 弧光灯发出并通过透镜聚焦

Equipment ## 设备

Reading the Vernier scale ## 读取游标刻度

Reading the Vernier scale ## 读取游标刻度

The zero of the arcminute scale will tell you how many degrees you have rotated the apparatus. 50 degrees plus a bit more than 30 arcminutes.

弧分刻度的零点将告诉您旋转装置度数。50再加上比30弧分多一点。

θ=5030+ a little bit \theta=50^{\circ} 30^{\prime}+\text { a little bit }

Reading the Vernier scale ## 读取游标刻度

Looking at when the fine scale and coarse scale align you can determine the "little bit". In this case, they are aligned on the 13 mark of the fine scale. So:

观察精细刻度粗刻度对齐的位置,您可以确定"一点点"。在这个情况下,它们在精细刻度的13标记处对齐。所以:

θ=5030+13=5043=50.717\theta=50^{\circ} 30^{\prime}+13^{\prime}=50^{\circ} 43^{\prime}=50.717^{\circ}

Part 1: calibration of the grating ## 第一部分光栅校准

Part 1: calibration of the grating ## 第一部分光栅校准

λyellow =587.56 nm\lambda_{\text {yellow }}=587.56 \mathrm{~nm}

d=λsinθd=\frac{\lambda}{\sin \theta}

Part 2: Balmer series ## 第二部分巴尔末系列

Part 2: initial energy levels ## 第二部分初始能级

1λ=R(1nf21ni2)\frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)

Tips ## 提示

  1. The experiment is clearly best performed in a dark environment. Try to screen your apparatus from ambient light in the best way possible (e.g. using the black cloth that you will find on the table)
  2. As already mentioned, the purple line will most likely look like a dark violet one and it will be quite difficult to see it. If you are having problems with it ask your TA. If that doesn't solve the problem neither, it is ok to skip it
  3. Remember to always measure your angle with respect to the central line. There are no negative angles!
  4. 这个实验显然最好在黑暗的环境中进行。尽可能地用最好的方式遮挡您的仪器,避免环境的干扰(例如使用您在桌子上找到的黑色布料
  5. 如前所述,紫线很可能看起来像深紫罗兰色,而且很难看到。如果您遇到问题,请询问您的助教。如果这样仍然解决不了问题,可以跳过这条线
  6. 记住始终相对于中心线测量您的角度。不存在负的角度